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Abstract
We study a relativistic charged Dirac particle moving in a rotating magnetic
field. By using a time-dependent unitary transformation, the Dirac equation
with the time-dependent Hamiltonian can be reduced to a Dirac-like equation
with a time-independent effective Hamiltonian. Eigenstates of the effective
Hamiltonian correspond to cyclic solutions of the original Dirac equation. The
nonadiabatic geometric phase of a cyclic solution can be expressed in terms
of the expectation value of the component of the total angular momentum
along the rotating axis, regardless of whether the solution is explictly available.
For a slowly rotating magnetic field, the eigenvalue problem of the effective
Hamiltonian is solved approximately and the geometric phases are calculated.
The same problem for a charged or neutral Dirac particle with an anomalous
magnetic moment is discussed briefly.

PACS numbers: 0365P, 0365V

In quantum mechanics, the Schrödinger equation, even with a time-independent Hamiltonian,
can be solved analytically only in a few cases. With a time-dependent Hamiltonian, the problem
is more difficult and fewer examples are well studied. One of the well studied examples
is a nonrelativistic neutral particle with spin and magnetic moment in a rotating magnetic
field [1–5]. This simple example has received much attention because of its relevance to the
problem of geometric phases [6–8], and also because exact solutions are available. In a recent
work [9] we have studied a nonrelativistic charged particle moving in a rotating magnetic
field, with or without a central potential. The case with a central potential can describe the
valence electron of an alkaline atom or that of a hydrogen atom under the influence of an
external magnetic field. The problem can be treated analytically and some exact solutions are
available. The purpose of this paper is to extend the previous work to a relativistic charged
Dirac particle (without a central potential). The main interest of the problem is to see how the
previous results are changed by the relativistic effect.
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Consider a charged particle with spin 1
2 , moving in a rotating magnetic field. The motion

is described by the Dirac equation. This equation can be written in a form similar to the
Schrödinger one. Thus the ideas of cyclic motion, nonadiabatic geometric phase etc for the
Schrödinger equation [7] also apply here. The Hamiltonian for this system is of course time
dependent. As in the nonrelativistic case, we use a time-dependent unitary transformation to
reduce the Dirac equation to a Dirac-like one with a time-independent effective Hamiltonian.
This is equivalent to transforming the equation into a rotating frame [10] where the magnetic
field is static. Thus the effective Hamiltonian in that frame is time independent. However, as
emphasized in [9], the transformation is merely a mathematical technique, and the effective
equation in the rotating frame (which is not an inertial system) does not describe a real physical
problem. The results derived from this equation are not observable in the rotating frame.

As in the nonrelativistic case, it can be shown that eigenstates of the effective Hamiltonian
correspond to cyclic solutions of the original Dirac equation. The nonadiabatic geometric
phase of a cyclic solution can be expressed in terms of the expectation value of the component
of the total angular momentum along the rotating axis, regardless of whether the solution is
explictly available. For a slowly rotating magnetic field, some of the terms in the effective
Hamiltonian can be treated as small perturbations and the eigenvalue problem of the remaining
terms can be solved exactly. In this approximation, the geometric phases of the cyclic solutions
can be calculated explicitly. The above described procedure can also be applied to the Dirac–
Pauli equation [11] for a charged or neutral particle with an anomalous magnetic moment,
except that the effective Hamiltonian is too complicated and its eigenvalue problem has not
been solved.

We begin with the Dirac equation[
iγ µ

(
∂µ +

iq

h̄c
Aµ

)
− Mc

h̄

]
	 = 0 (1)

whereM and q are respectively the mass and electric charge of the particle andAµ is the vector
potential describing the external electromagnetic fields. The latter is chosen as

A0 = 0 A(t) = 1
2B(t) × r. (2)

This vector potential produces the magnetic field B(t), which is chosen to be one with a
constant magnitude B and rotating about some fixed axis at a constant angle θB and with a
constant frequency ω. The rotating axis is chosen as the z axis of the coordinate system. The
magnetic field is therefore

B(t) = Bn(t) n(t) = (sin θB cosωt, sin θB sinωt, cos θB). (3)

We take B > 0 without loss of generality. Note that A(t) also generates a time-varying
electric field. Thus we are indeed dealing with a time-varying electromagnetic field. However,
the electric field does not enter the Dirac equation directly if the particle has no anomalous
magnetic moment. We write the Dirac equation in the following form:

ih̄∂t	 = H(t)	 (4a)

where

H(t) = cα ·
[
p − q

c
A(t)

]
+ Mc2γ 0 (4b)

and α = γ 0γ. To solve the equation we define the orbit angular momentum (in units of h̄)
l = r × p/h̄, the spin angular momentum s = Σ/2 where �i = iεijkγ jγ k/2 and the total
angular momentum j = l + s, and then make a time-dependent unitary transformation

	(t) = W(t)�(t) (5)
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where

W(t) = exp(−iωtjz) (6)

and jz is the z-component of the total angular momentum j. This transformation is a
generalization of that used in solving the Schrödinger equation for a neutral [2] or charged [9]
particle with spin in the rotating magnetic field. It is not difficult to show that

W †(t)H(t)W(t) = H(0). (7)

Thus we obtain the following equation for �:

ih̄∂t� = Heff� (8)

where the effective Hamiltonian

Heff = H(0) − h̄ωjz. (9)

Since Heff is time independent, equation (8) has the formal solution

�(t) = Ueff(t)�(0) Ueff(t) = exp(−iHeff t/h̄). (10)

With the obvious relation 	(0) = �(0), the time-dependent Dirac equation (4) is formally
solved as

	(t) = U(t)	(0) U(t) = W(t)Ueff(t). (11)

Since U(t) involves no chronological product, this solution is convenient for practical
calculations.

Now we show that eigenstates of the effective Hamiltonian correspond to cyclic solutions
of equation (4). We take the initial condition

	i(0) = ϕi (12)

where ϕi is an eigenstate of the effective Hamiltonian with eigenvalueEi , and calculate	i(T ),
where T = 2π/ω is the period of the rotating magnetic field. Here for convenience we use
one subscript i to represent all the quantum numbers that is needed to specify an eigenstate.
Obviously, Ueff(t)ϕi = exp(−iEit/h̄)ϕi , valid for all t , and W(T )ϕi = exp(−i2πjz)ϕi .
Because we can always expand ϕi as a linear combination of the eigenstates of jz, we obtain

	i(T ) = exp(−iEiT /h̄ − iπ)	i(0). (13)

Hence it is indeed a cyclic solution, and the total phase change in a period is

δi = −EiT /h̄ − π mod 2π. (14)

To determine the dynamic phase, we should calculate

〈H(t)〉i ≡ (	i(t),H(t)	i(t)) = (	i(0),W
†H(t)W	i(0)) = (ϕi,H(0)ϕi).

Because H(0) = Heff + h̄ωjz, we have

〈H(t)〉i = Ei + h̄ω〈jz〉i . (15)

Here 〈jz〉i = (ϕi, jzϕi) = (	i(t), jz	i(t)) is the expectation value of jz in the state 	i(t),
and it is time independent. Note that 〈H(t)〉i is also independent of t . Thus the state 	i(t) is
somewhat similar to a stationary state in a system with a time-independent Hamiltonian. The
dynamic phase is

βi = −h̄−1
∫ T

0
dt 〈H(t)〉i = −EiT /h̄ − 2π〈jz〉i . (16)

Therefore the nonadiabatic geometric phase is

γi = δi − βi = −π + 2π〈jz〉i mod 2π (17)
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and is determined by 〈jz〉i . This is a relativistic generalization of the result for a nonrelativistic
neutral [2] or charged particle [9], and has the same form as the corresponding nonrelativistic
result. It is valid regardless of whether ϕi is explicitly available or not, and is convenient for
approximate calculations if necessary.

Our next task is to find the eigenvalues and eigenstates of Heff . Since the effective
Hamiltonian is somewhat complicated, we have to make some approximation. We assume
that ω is small such that the term −h̄ωjz in Heff can be treated as a small perturbation. That
is, we are considering a slowly rotating magnetic field. In the nonrelativistic case [9], the
restriction is specifically ω � |q|B/2Mc, and we have argued that this is in fact a rather loose
restriction. From the following result for the energy levels we would see that the argument
also holds in the relativistic case. We thus decompose Heff as

Heff = H 0
eff + H ′

eff (18)

where

H 0
eff = cα ·

(
p − q

c
A0

)
+ Mc2γ 0 (19)

whose eigenvalue problem will be solved exactly, and

H ′
eff = −h̄ωjz (20)

which will be treated as a small perturbation. In equation (19) A0 = A(0). Note that
H 0

eff = H(0). It is not difficult to show that

H 0
eff = exp(−iθBjy)H

z
eff exp(iθBjy) (21)

where

Hz
eff = cα ·

(
p − q

c
Az

)
+ Mc2γ 0, (22)

Az = 1
2Bz × r and Bz = Bnz = B(0, 0, 1). This is the Hamiltonian of a relativistic charged

particle in a static uniform magnetic field along the z axis.
The eigenvalue problem of Hz

eff is easy. We write down the eigenvalue equation

Hz
effζ = E0ζ (23)

and denote ζ = (u, v)τ where u and v are two-component spinors and the superscript τ denotes
matrix transposition. In terms of the two-component spinors the above equation takes the form

cσ ·
(
p − q

c
Az

)
u = (E0 + Mc2)v

cσ ·
(
p − q

c
Az

)
v = (E0 − Mc2)u.

(24)

One can solve the first for v, and substitute it into the second. Then an equation in u alone is
obtained. It can be solved in the cylindrical coordinates (ρ, φ, z). The energy eigenvalues are

E0
i = E0

nznρmms± = ±{(Mc2)2 + (h̄ckz)
2 + |q|Bh̄c[2nρ + |m| + 1 − ε(q)(m + 2ms)]}1/2 (25)

where we use a single subscript i to represent all the quantum numbers and the sign of
the energy; kz = 2πnz/d where d is a length in the z direction for box normalization and
nz = 0,±1,±2, . . . ; nρ = 0, 1, 2, . . . is a radial quantum number; m = 0,±1,±2, . . . and
ms = ±1/2; ε(q) is a sign function of q. The corresponding eigenfunctions are given by

ui(ρ, φ, z, sz) = Nie
−α2ρ2/2(αρ)|m|L|m|

nρ
(α2ρ2)

eimφ

√
2π

eikzz

√
d
χms

(sz) (26)

where α = √|q|B/2h̄c, the L|m|
nρ are Laguerre polynomials [12], χms

(sz) is the eigenstate of
sz with eigenvalue ms and

vi(ρ, φ, z, sz) = c

E0
i + Mc2

σ ·
(
p − q

c
Az

)
ui(ρ, φ, z, sz). (27)
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We do not write down the specific form of vi because it is lengthy and not necessary for the
subsequent calculations. We just mention that it consists of two terms. One is proportional
to ui , and the other involves the factor ei(m−1)φχms+1(sz) or ei(m+1)φχms−1(sz), depending on
whether ms = −1/2 or 1/2, respectively. It should be remarked that neither m nor ms is a
good quantum number. A good quantum number related to them is mj = m + ms , which is
the eigenvalue of jz, a conserved quantity. The reason why we need the quantum number ms

is that for a given mj there are two kinds of solution, corresponding to the two values of ms .
In the above solutions the normalization constants are

Ni = α

(
E0
i + Mc2

E0
i

)1/2 [
nρ!

3(nρ + |m| + 1)

]1/2

. (28)

Note that the solutions in the above forms are not appropriate when E0
i = −Mc2, which may

happen when nz = 0, nρ = 0, m = ε(q)|m| and ms = ε(q)|ms |. Indeed, one cannot eliminate
v from equation (24) in this case. Rather, one should eliminate u and solve the resulting
equation for v. The solution reads

v00mms−(ρ, φ, z, sz) = N ′
00mms−e−α2ρ2/2(αρ)|m| eimφ

√
2π

1√
d
χms

(sz) (29)

u00mms−(ρ, φ, z, sz) = − 1

2Mc
σ ·

(
p − q

c
Az

)
v00mms−(ρ, φ, z, sz). (30)

We do not write down the specific form for u00mms− as before. The normalization constant in
the above solution is

N ′
00mms− =

√
2α√

3(|m| + 1)
. (31)

Thus the equation (23) is completely solved. The solutions of this equation can also be found
in [13], but in different forms. The reason why the solution with a specific energy level can
have different forms is that the energy levels are degenerate. It seems that the solutions in our
form are more explicit and convenient.

Now that equation (23) is solved, the eigenvalue problem of H 0
eff becomes trivial. The

eigenfunctions are

ϕ0
i = exp(−iθBjy)ζi (32)

where ζi = (ui, vi)
τ , and the corresponding energy eigenvalues are still given by equation (25).

We will use theseϕ0
i as the approximate eigenfunctions ofHeff . Of course the explicit functional

form of ϕ0
i is complicated, but this is not necessary in practical calculations. The lowest-

order corrections to the energy eigenvalues are given by the expectation values of H ′
eff in the

approximate eigenstates. The corrected energy levels are

Ei = E0
i − mjh̄ω cos θB. (33)

Now there is no degeneracy in the quantum numbers.
Our final task is to work out the geometric phase in a period for the ith state, that is, a state

with the initial condition (12). Since we have only an approximate result ϕ0
i for the eigenstate

ϕi , we can calculate the nonadiabatic geometric phase only approximately. The result is

γi = −mj4B mod 2π (34)

where 4B = 2π(1 − cos θB) is the solid angle subtended by the trace of the rotating magnetic
field. For ω � |q|B/2Mc, this has the same value as the corresponding nonrelativistic
result [9]. In the above approximation, it can be shown that

(	i(t), j	i(t)) = mj(sin θB cosωt, sin θB sinωt, cos θB). (35)
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Therefore the total angular momentum precesses synchronously with the magnetic field and
approximately at the same angle θB with the rotating axis. Then 4B is also (approximately)
the solid angle subtended by the trace of the total angular momentum. The geometric nature
of the result (34) is thus obvious. In the nonrelativistic case, both the orbit and spin angular
momentum precess synchronously with the magnetic field [9]. Here only the total angular
momentum does. This is the main difference caused by the relativistic effect.

Now we turn to the problem of a charged or neutral particle with anomalous magnetic
moment. The Dirac–Pauli equation is[

iγ µ

(
∂µ +

iq

h̄c
Aµ

)
− Mc

h̄
− 1

2

µa

h̄c
σµνFµν

]
	 = 0 (36)

where µa is the anomalous magnetic moment, Fµν = ∂µAν − ∂νAµ and σµν = i[γ µ, γ ν]/2.
This equation differs from equation (1) by the last term in the square bracket. When q = 0 it
describes a neutral particle, otherwise it describes a charged one. With the previous Aµ, it can
be recast in the Hamiltonian form:

ih̄∂t	 = H(t)	 (37a)

where

H(t) = cα ·
[
p − q

c
A(t)

]
+ Mc2γ 0 − µaγ

0Σ · B(t) + iµaγ · E(t). (37b)

Note that the electric field E = −c−1∂tA now enters the equation directly. We make the
time-dependent unitary transformation (5), (6). With some algebra it can be shown that

W †(t)H(t)W(t) = H(0) (38)

still holds in the present case. Thus the equation for � has the same form as given by
equations (8) and (9), and all subsequent discussions until equation (17) are still valid.
Unfortunately, H(0) is too complicated even for a neutral particle and we have not been
able to obtain any eigenstate of it.

In conclusion we have considered a relativistic charged particle moving in a rotating
magnetic field. The Hamiltonian for such a system is time dependent. By making use of a time-
dependent unitary transformation, the Dirac equation can be reduced to a Dirac-like equation
with an effective Hamiltonian which is time independent. In this way we obtain a formal
solution to the original Dirac equation, which determines the time evolution of an arbitrary
initial state. The time-evolution operator in this formal solution, unlike that for a general time-
dependent Hamiltonian, involves no chronological product, and thus is convenient for practical
calculations. Any solution with one of the eigenstates of the effective Hamiltonian as an initial
state is a cyclic solution. The nonadiabatic geometric phase in a period for such a solution can
be expressed in terms of the expectation value of the component of the total angular momentum
along the rotating axis. This is an exact relation, which holds regardless of whether the solution
is explicitly available, and is convenient for approximate calculations whenever necessary. For
a slowly rotating magnetic field, the eigenvalue problem of the effective Hamiltonian is solved
approximately, and the geometric phases are calculated. The difference between the relativistic
results and the corresponding nonrelativistic ones is discussed. We also briefly discussed the
same problem for a relativistic particle with an anomalous magnetic moment.
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